

Roller Compacted Concrete **Structural** Design **Methods**

Review of International Practice

John Figueroa, Director

John Figueroa CONSULTING

Work funded by ASCP Innovation Fund

3

4

5

a: Unit 5, 41-47 Five Islands Road Port Kembla NSW 2505 1: 02 9918 2610 e: exec@concretepavements.com.au w: www.concretepavements.com.au

Roller Compacted Concrete Structural Design Methods – Review of International Practice

Authored by John Figueroa Director, John Figueroa Consulting Pty Ltd

Endorsed by James Walker Vice President, ASCP

Today's content

RCC Mixture Properties

- Review of RCC Fatigue Models
- Design Methods and Computer Programs
- RCC Paving Practice
- ⁶ RCC Curing and Sawcutting of Joints
 - Summary and Acknowledgments

What is an RCC Pavement?

Like conventional concrete pavement

- Same basic ingredients
- Similar mechanical properties
- Curing is critical!

Like asphalt pavement

- Similar aggregate gradation
- Similar placement and compaction

RCC Pavement

- Stiffer than zero-slump concrete
- Plant mixed and transported in dump trucks
- Placed with a high-density asphalt paving machine
- Paved and rolled to ensure high compacted density
- Cured with water or curing compound

Conventional concrete vs RCC

Materia	Proportions	(%	by weight)
---------	-------------	----	------------

Material	Conventional Concrete	RCC
Water	~7%	~5%
Cement	~15%	~12%
Fine Aggregate	~30%	~45
Coarse Aggregate	~50%	~35%

Reinforcement

- Conventional concrete pavement:
 - Always has some kind of reinforcement
- RCC pavement:
 - NONE

Workability, Paving, and Consolidation

- Conventional concrete for slip-form paving is:
 - Plastic and flowable
 - But stiff enough to maintain shape
 - Consolidated with internal and surface vibrators
 - Completed in one pass
- Roller compacted concrete:
 - Has the consistency of damp dirt
 - Is very stiff but fluid enough to distribute paste under vibratory rollers
 - Is laid in multiple lifts when total pavement thickness is greater than ~250 mm.

Finishing

- Conventional concrete pavement:
 - Tining
 - Hessian drag
- Roller compacted concrete pavement:
 - No finishing
 - Rolled surface is the riding surface
 - Broomed surface after the application of a finishing aid
 - Can be diamond ground to improve ride quality

4

Conventional concrete vs RCC

Flexural Strength (MPa) = 0.79 \sqrt{fc} (about 5% higher than that of conventional paving concrete)

Elastic Modulus (MPa)= 4,900 \sqrt{fc} (slightly than that of conventional paving concrete)

Flexural and splitting tensile strength data from U.S. projects Source: Rollings (1988)

		Sawed beam and core test results	
Project	Age, days	Average flexural strength, MPa	Average splitting tensile strength, MPa
Ft. Stewart	90	7.0	
Ft. Hood	7	4.6	
	28	5.7	
Harvey Barracks	7		2.3
	28	5.4	2.8
Ft. Campbell	7	4.5	2.7
	28		
Aberdeen Proving Ground	7	3.8	2.6
	28	4.3	3.1

Flexural strength from sawn beams extracted from the pavement Source: Rollings (1988)

Test	Flexural Strength (MPa)	Source of Data
Ft. Hood	5.78	Ft. Worth District
	5.72	US Army Corps of Engineers
Ft. Lewis	3.33	Seattle District
	3.59	US Army Corps of Engineers
	3.96	
Ft. Benning	4.90	Savannah District
		US Army Corps of Engineers
Kitzingen	5.40	Pittman 1988
	6.43	
Toole Army Depot	5.57	Hess 1987

RCC behaviour over the first few days after paving

8

Advantages of RCC Pavements

- Durability benefit of concrete
- Faster construction
- (Potential) cost savings
- Higher solar reflectance

Where can RCC be used?

- Large open areas for easy construction
 - Ports
 - Industrial facilities
 - Carparks
 - Container yards
- Example: The Port of Houston
 - 3 different pavement designs
 - Thickness ranged from 350 460 mm
 - Port estimates RCC shortened construction by 4 months
 - 7-day compressive: 30 MPa
 - 7-day flexural: 3.9 MPa

Can RCC be used in roads?

- Slow(er) speed traffic
 - Arterial and local streets
 - Shoulders
- Example: San Angelo, TX
 - TxDOT reconstructed a number a streets with RCC pavement
 - Diamond ground surface for smoothness
- Example: Georgia DOT
 - I-285 shoulder replacement
 - 150 200 mm thickness
 - Rumble strips ground into RCC

Concept of Fatigue Endurance Limit

Load applications to failure, N

Fatigue Endurance Limits used in Design

Use	Fatigue endurance limit	Method
Road pavements	45%	1984 PCA
	40%	1987 PCA
Industrial / Intermodal	38%	2002 PCA
	50%	2018 PavementDesigner.org
Airport pavements	50%	2011 AirPave

Flexural Behaviour of Concrete Slabs

S-N Fatigue Relationship

RCC Fatigue Curves from Laboratory Studies

ACI (1974 – 1995)
CTL (1987)
CTL (2008)
Rodden (2013)
Sengun et al. (2021)
USACE (1994)
Graeff et al. (2012)

- UK National Highways (2020)

Load applications to failure, N

Recent PhD work undertaken at Nottingham

16

Reliability in RCC Pavement Design

17

Pavement ME Concrete Fatigue Model (MEPDG)

StreetPave Fatigue Model vs 1987 RCC PCA Model

StreetPave Fatigue Model

Design Reliability (%)

Slabs Cracked at end of life (e.g. 15%)

Typical Loading Case Scenarios

Single Wheel Load

Dual Wheel LoadSource: Huang (2004)20

Load Transfer Efficiency at Construction Joint

Source: Gomaco RTP-500 -Ohio Industrial Loop Road (2011)

There is little or no aggregate interlock at construction joints

For design purposes, assume LTE $\approx 0\%$

Source: Kemper Construction

RCC Thickness Design Methods

Portland Cement Association

Structural Design of Roller-Compacted Concrete for Industrial Pavements PCA Publication No IS233.01

Design for Interior Loading, but ...

... Unlike highways where all wheel loads run very close to the pavement edge, the critical wheel-load placement for industrial facilities is considered to be at the interior of the pavement, away from pavement edges. Where vehicles will be expected to travel at or on and off pavement edges the edge thickness should be increased 20%.

SOFTWARE FOR THE THICKNESS DESIGN OF ROLLER-COMPACTED CONCRETE PAVEMENT

CTL – PCA Fatigue Model

Design for:

- Interior Loading
- Edge Loading

RCC Design Guides

The fatigue curve traditionally used in RCC pavement design is more conservative than the fatigue curve traditionally used in conventional concrete pavement design. When designing RCC pavements using conventional pavement design software (such as WinPAS or Street-Pave), it is recommended to that the default reliability level be increased by 5 percent to achieve results comparable to those of traditional RCC pavement design software (such as RCC-PAVE).

General Concrete Pavement Design Software

Street Module in PavementDesigner.org

Other Programs (not used in Australia)

AASHTOWare Pavement ME

(previously known as DARWin-ME and MEPDG)

RCC Paving Practice

- High density screed (Vogele or ABG Titan)
- High initial density from paver (90% 96%)
- Availability is increasing, but still limited
- Smoother surface due to higher initial density
- Less "roll down" to achieve final density
- High-production (1.8 to 2.4 m/min)
- Lift thick range: 100 mm to 230 mm
- Strongly RECOMMENDED

RCC Surface Characteristics

Diamond Ground Conventional - Concrete Diamond Ground RCC

Source: Zollinger, LTRC (2014)

Finishing Techniques

Curing & Sawcutting of Joints

Curing

- Applied at same rate or slightly higher than conventional concrete
- Ensure uniformity with application process
- Apply as soon as possible behind roller operation
- Recommend water-based, resin-based, white-pigmented curing compounds
- Ensures durable surface

Sawcut & Sealing of Joints

- More aesthetically pleasing
- Early entry saw very effective, shortly following placement
- Recommend sawing within 2 6 hours to avoid uncontrolled cracking
- Depth: D/4 to D/3
- Spacing: Maximum 36 times thickness

Source: Zollinger, LTRC (2014)

Summary

- RCC pavement:
 - Provides the long-term durability of conventional concrete with diamond grinding an option for a smooth finish
 - Can be constructed relatively fast
- Successful and proven applications include:
 - Heavy industrial areas
 - Collector roads
 - Local streets
 - Shoulders
- Need to develop a Technical Guide for the design and construction of RCC pavements.
- Need to adapt a design methodology for Australian design and construction practice.
- Need to develop material and roadworks specification for RCC surface exposed pavements.

Acknowledgements

Thank you to ASCP Innovation Fund for preparing the literature review report and to ERDC for allowing me to visit their facilities and engage with their team".

Appreciate the partnership very much!

US Army Corps of Engineers_®

Dr David Pittman

Jeb Tingle, Dr Ray Rollings & Dr Marian Rollings

Thank you!

NO TIME FOR QUESTIONS

john@johnfigueroaconsulting.com +61 407 733 513 Source: RCC Pavement Council